Calculation of the form which is bending around the reflected signal on the basis of difficult mathematical model of reflection and dispersion of the signal

  • A.I. Gonchar State Institution ″Scientific Hydrophysical Center of the National Academy of Sciences of Ukraine″
  • S.G. Fedoseenkov State Institution ″Scientific Hydrophysical Center of the National Academy of Sciences of Ukraine″
  • A.I. Shundel State Institution ″Scientific Hydrophysical Center of the National Academy of Sciences of Ukraine″
  • L.V Nesterenko State Institution ″Scientific Hydrophysical Center of the National Academy of Sciences of Ukraine″
Keywords: echo signal, interface, directional characteristic, bottom sediments

Abstract

Described and is executed numerical calculation of model of time dependence of acoustic echo strength from a bottom depending on type of ground deposits, depth of a place and characteristics of the radiating antenna. The model bending around a reflected signal assumes the isotropic and Gaussian distributed bottom configuration, uniformity of a deposit in upper several meters

References

Brekhovskikh, L.M. (ed.). Akustika okeana. Moscow: Nauka. 1974. (In Russian).

Sverdlin, G.M. Prikladnaia gidroakustika. Leningrad: Sudostroienie. 1990. (In Russian).

Stashkevich, A.P. Akustika moria. Leningrad: Sudostroienie. 1966. (In Russian).

Tyurin, A.M. Teoreticheskaia akustika. Leningrad: Voienno-morskaia akademiia. 1971. (In Russian).

APL-UW High-frequency ocean environmental acoustic models handbook. Defense Technical Information Center. 1997. 210 p.

Bell, T.H. Statistical features of sea-floor topography. Deep Sea Research and Oceanographic Abstracts. 1975. vol. 22(12). P. 883–892. https://doi.org/10.1016/0011-7471(75)90090-X

Berkson, J.M., Matthews, E. Statistical characterization of seafloor roughness. IEEE Journal of Oceanic Engineering. 1984. vol.9, No 1. P. 48–51. https://doi.org/10.1109/JOE.1984.1145588

Briggs, K.B. Microtopographical roughness of shallow-water continental shelves. IEEE Journal of Oceanic Engineering. 1989. vol. 14, No 4. P. 360-367. https://doi.org/10.1109/48.35986

Chivers, R., Emerson, N., Burns, D.R. New acoustic processing for underway surveying. The Hydrographic Journal. London. 1990. No 56. P. 9 – 17.

Fox, C.G., Hayes, C.E. Quantitative methods for analyzing the roughness of the seafloor. Rev. Geophys. 1985. vol. 23, No 1. P. 1–48. https://doi.org/10.1029/RG023i001p00001

Hamilton, E.L. Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am. 1980. vol. 68, No 5. P. 1313–1340. https://doi.org/10.1121/1.385100

Hamilton, E.L., Bachman, R.T. Sound velocity and related properties of marine sediments. J. Acoust. Soc. Am. 1982. vol. 72, No 6. P. 1891–1904. https://doi.org/10.1121/1.388539

Ishimaru, A. Wave Propogation and Scattering in Random Media. Wiley-IEEE Press, 1999.

Ivakin, A.N., Lysanov, Y.P. Underwater sound scattering by volume inhomogeneities of a bottom medium bounded by a rough surface. Sov. Phys. Acoust. 1981. vol. 27, No 3. P. 212–215.

Jackson, D.R., Winebrenner, D.P., Ishimaru, A. Application of the composite roughness model to high-frequency bottom backscattering. J. Acoust. Soc. Am. 1986. vol. 79. P. 1410-1422. https://doi.org/10.1121/1.393669

Jackson, D.R., Baird, A.M., Crisp, J.J., Thomsom, P.A.G. High-frequency bottom backscattering measurements in shallow water. J. Acoust. Soc. Am. 1986. vol. 80, No 4. P. 1188-1199. https://doi.org/10.1121/1.393809

Jackson, D.R., Briggs, K.B. High-frequency bottom backscattering: Roughness versus sediment volume scattering. J. Acoust. Soc. Am. 1992. vol. 92, No 2. P. 962–977. https://doi.org/10.1121/1.403966

Jackson, D.R., Briggs, K.B., Williams, K.L., Richardson, M.D. Test of models for high-frequency seafloor backscatter. IEEE Journal of Oceanic Engineering. 1996. vol. 21, No 4. P. 458–470. https://doi.org/10.1109/48.544057

McDaniel, S.T., Gorman, A.D. An examination of the composite roughness scattering model. J. Acoust. Soc. Am. 1983. vol. 73, No 5. P. 1476–1486. https://doi.org/10.1121/1.389302

Moe, J.E., Jackson, D.R. Near-field scattering through and from a two-dimensional fluid–fluid rough interface. J. Acoust. Soc. Am. 1998. vol. 103, No 1. P. 275–287. https://doi.org/10.1121/1.421090

Moustier, C., Alexandrou, D. Angular dependence of 12-kHz seafloor acoustic backscatter. J. Acoust. Soc. Am. 1991. vol. 90, No 1. P. 522–531. https://doi.org/10.1121/1.401278

Nesbitt, E.H. Estimation of sea bottom parameters using acoustic backscattering at vertical incidence. Master’s thesis. University of Washington, 1988.

Physics of sound in the sea. National Defense Research Council. Technical report. National Research Council, Peninsula Publishing. Los Altos, CA, 1946.

Pouliquen, E., Lurton, X. Identification de la nature du fond de la mer a` l’aide de signaux d’echosondeurs. I. Modelisation d’echos reverberes par le fond. Acta Acust. European Acoustics Assoc. 1994. vol. 2, No 2. P. 113–126.

Sternlicht, D.D., Moustier, C.P. Time-dependent seafloor acoustic backscatter (10–100 kHz). J. Acoust. Soc. Am. 2003. vol. 114, No 5. P. 2709–2725. https://doi.org/10.1121/1.1608018

Stockhausen, J.H. Scattering from the volume of an inhomogeneous half-space. Report No. 63/9. Naval Research Establishment. Canada, 1963.

Tsehmahman, A.S., Collins, W.T., Prager, B.T. Acoustic seabed classification and correlation analysis of sediment properties by QTC view. Proceedings of IEEE OCEANS 97. 1997. P. 921–926. https://doi.org/10.1109/OCEANS.1997.624114

Urick, R.J. Principles of Underwater Sound. (3rd Edition). McGraw-Hill, New York, 1983.

Published
2019-02-15
How to Cite
Gonchar, A., Fedoseenkov, S., Shundel, A., & Nesterenko, L. (2019). Calculation of the form which is bending around the reflected signal on the basis of difficult mathematical model of reflection and dispersion of the signal. Oceanographic Journal (Problems, Methods and Facilities for Researches of the World Ocean), (1(12), 49-62. Retrieved from https://oceanographic-journal.org.ua/index.php/journal/article/view/7