Physical foundations of nonlinear acoustic methods for studying the ocean and bottom sediments
Abstract
The article shows that acoustic research is based on the sound backscattering method. Acoustic methods make it possible to estimate the contribution of sufficiently large phase inclusions that make up heterogeneous heterogeneities in the sea layer: large plankton (mainly zooplankton), fish, suspended matter, gas bubbles, etc. The described method of acoustic sounding makes it possible to study the small-scale structure of the aquatic environment in the shelf part of the sea and its spatio-temporal variability associated with the manifestation of internal waves, the presence of bubbles, plankton, turbulent formations, solid suspensions.
References
Akulichev VA, Dolgih GI, Morgunov YuN. Izuchenie fundamental'nyh osnov vozniknoveniya,razvitiya, transformacii i vzaimodejstviya gidroakusticheskih, gidrofizicheskih i geofizicheskih polej vusloviyah glubokogo i melkogo morya, a takzhe razvitie akusticheskih metodov svyazi, lokacii i diagnostiki slozhnyh system [Study of the fundamental foundations of the emergence, development, transformation and interaction of hydroacoustic, hydrophysical and geophysical fields in the deep and shallow sea, as well as the development of acoustic communication methods, location and diagnostics of complex systems]. Vladivostok; 2007.390 p. Report № ГР 01201363046 [in Russian].
Akulichev VA. Pul'sacii kavitacionnyh polostej. [Pulsations of cavitation cavities]. In:L.D. Rozenberga, editor. Moshchnye ul'trazvukovye polya [Powerful ultrasonic fields]. M.: Nauka; 1968:129– 166 [in Russian].
Akulichev VA, Alekseev VN, Bulanov VA. Periodicheskie fazovye prevrashcheniya v zhidkostyah [Periodic phase transformations in liquids]. M.: Nauka; 1986. 280 p. [in Russian].
Akulichev VA, Bulanov VA, Storozhenko AV. Ocenka raspredeleniya planktona v okeane metodom akusticheskogo zondirovaniya [Estimation of the distribution of plankton in the ocean using acoustic sounding]. Doklady Akademii nauk. 2011;438(2):267–270 [in Russian].
Akulichev VA, Bulanov VA. Issledovaniya neodnorodnostej morskoj sredy metodami akusticheskogo zondirovaniya [Research of inhomogeneities of the marine environment by methods of acoustic sounding]. In: Akulichev VA, editor. Dal'nevostochnye morya Rossii [Far Eastern seas of Russia]. M.: Nauka; 2007. p. 129–231 [in Russian].
Akulichev VA, Bulanov VA. Vliyanie mikroneodnorodnostej na akusticheskie harakteristiki morskoj sredy [Influence of microinhomogeneities on the acoustic characteristics of the marine environment]. In: Akulichev VA, editor. Okeanologicheskie issledovaniya Dal'nevostochnyh morej i severo-zapadnoj chasti Tihogo okeana. [Oceanological studies of the Far Eastern seas and the northwestern part of the Pacific Ocean. In two books]. Vladivostok: Dal'nauka; 2013. p.305–327 [in Russian].
Akulichev VA, Bulanov VA. O spektre puzyr'kov gaza i vozmozhnostyah akusticheskoj spektroskopii v pripoverhnostnom sloe okeana [On the spectrum of gas bubbles and the possibilities of acoustic spectroscopy in the near-surface layer of the ocean]. Doklady Akademii nauk. 2012;446(2):212–215 [in Russian].
Akulichev VA, Bulanov VA. Ob anomaliyah akusticheskih harakteristik polidispersnyh zhidkostej s gazovymi i parovymi puzyr'kami [Anomalies in the acoustic characteristics of polydisperse liquids with gas and vapor bubbles]. Doklady Akademii nauk. 2013;448(2):213–217 [in Russian].
Akulichev VA, Bulanov VA, Klenin SA. Akusticheskoe zondirovanie gazovyh puzyr'kov v morskoj srede [Acoustic sounding of gas bubbles in the marine environment]. Akusticheskij zhurnal. 1986;32(3):289– 295 [in Russian].
Akulichev VA, Bulanov VA, Korskov IV, Storozhenko AV. Monitoring ekologicheskogo sostoyaniya akvatorij s primeneniem akusticheskogo zondirovaniya [Monitoring the ecological state of water areas using acoustic sounding]. Podvodnye issledovaniya i robototekhnika. 2012;2(14):43–55 [in Russian].
Bulanov VA. Vvedenie v akusticheskuyu spektroskopiyu mikroneodnorodnyh zhidkostej [Introduction to acoustic spectroscopy of microinhomogeneous liquids]. Vladivostok: Dal'nauka; 2001. 280 p.[in Russian].
Bulanov VA. K voprosu ob ocenke raspredeleniya biomassy v deyatel'nom sloe okeana po dannym o rasseyanii zvuka [On the assessment of the distribution of biomass in the active layer of the ocean based on sound scattering data]. Podvodnye issledovaniya i robototekhnika. 2008;1(5):58–65 [in Russian].
Bulanov VA. O nelinejnyh akusticheskih harakteristikah kristallizuyushchejsya zhidkosti [On nonlinear acoustic characteristics of a crystallizing liquid]. Uchen. zap. fiz. fak-ta Mosk. un-ta. 2014;(5):145310-1–145310-7 [in Russian].
Bulanov VA, Korskov IV. Sistema mnogochastotnogo akusticheskogo zondirovaniya s vremennym razdeleniem chastot [Time Division Multi-Frequency Acoustic Sounding System]. Pribory i tekhnika eksperimenta. 2009;(3):120–122 [in Russian].
Kuznecov VP. Nelinejnaya akustika v okeanologii [Nonlinear acoustics in oceanology]. M.: Fizmatlit; 2010. 264 p. [in Russian].
Naugol'nyh KA, Ostrovskij LA. Nelinejnye volnovye processy v akustike [Nonlinear wave processes in acoustics]. M.: Nauka; 1990. 237 p. [in Russian].
Novikov BK, Timoshenko VI. Parametricheskie antenny v gidrolokacii [Parametric antennas in sonar]. L.: Sudostroenie; 1990. 256 p. [in Russian].
Rudenko OV, Soluyan SI. Teoreticheskie osnovy nelinejnoj akustiki [Theoretical foundations of nonlinear acoustics]. M.: Nauka; 1975. 287 p. [in Russian].
Akulichev VA, Bulanov VA. Measurements of bubbles in sea water by nonstationary sound scattering. J. Acoust. Soc. Am. 2011;130(5):3438–3449.
Andreeva IB, Belousov AV. Multiple sound scattering by densely packed shoals of marine animals. ICES Journal of Marine Science. 1996;(53):323–327.
Andreeva IB, Tarasov LL. Scattering of acoustic waves by small crustaceans. Acoustical Physics. 2003;(49):125–128.
Apfel RE. The effective nonlinearity parameter for immiscible liquid mixtures. J. Acoust. Soc. Amer. 1983;74(6):1866–1868.
Deane GB. Sound generation and air entrainment by breaking waves in the surf zone. J. Acoust. Soc. Amer. 1997;(102):2671–2689.
Farmer D, Vagle S. Wave Induced Bubble Clouds in the Upper Ocean. Journ. Geophys. Res. 2010;(115):28–49.
Garrett C, Li M, Farmer D. The Connection between Bubble Size Spectra and Energy Dissipation Rates in the Upper Ocean. J. Phys. Ocean. 2000;30(9):2163–2171.
Gorska N, Chu D. Some aspects of sound extinction by zooplankton. J. Acoust. Soc Am. 2001;110(5): 2315–2325.
Jech JM, Horne JK, Chu D, et al. Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research. J. Acoust. Soc. Am. 2015;138(6):3742–3764.
Lavery AC, Wiebe PH, Stanton TK, et al. Determining dominant scatterers of sound in mixed zooplankton populations. J. Acoust. Soc. Am. 2007;122:3304–3326.
Leighton TG. The acoustic bubble. San-Diego: Academic; 1994. 613 p.
Macaulay MC. A generalised target strength model for euphausiids, with applications to other zooplankton. J. Acoust. Soc. Am. 1994;95:2452–2466.
Medwin H. Acoustical determination of bubble size spectra. J. Acoust. Soc. Am. 1977;62:1041–1044.
Medwin H, Breitz N. Ambient and transient spectral density in quiescent seas and under spilling breakers. J. Geophys. Res. 1989;94:12751–12759.
Neppiras EA. Acoustic Cavitation. Phys. Reports. 1980;61(3):159–251.
Ressler P. Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico: determination of dominant zooplankton and micronekton scatterers. Deep-Sea Research. 2002;49:2035–2051.
Vagle S, Farmer D. The measurement of bubble-size distributions by acoustical backscatter. Journ. of Atmospheric and Oceanic Technology. 1992;9:630–664.
Weibe P, Greene C, Stanton T. Sound scattering by live zooplankton and micronecton. J. Acoust. Soc. Am. 1990;88(5):2346–2359.