Development of a mathematical model of a layered heterogeneous medium as an integral part of the oceanographic data bank of the National Academy of Sciences of Ukraine

  • A.I. Shundel State Institution "Scientific Hydrophysical Centre of the National Academy of Sciences of Ukraine"
Keywords: spatial spectrum, bottom sediments, Fourier transformations, echo sounders, geoacoustic parameters of sediments, partition boundary, GIS technologies.

Abstract

The article develops and implements analytical and numerical methods for modeling layered geological structures with cavities of simple and complex shapes. The analysis of existing models of the real geological environment is carried out, information is provided on such models as: impedance and elastic models of bottom sediments, heterogeneous models of environments, statistical models of the bottom environment. There are developed analytical and numerical methods for mathematical modeling of the structure and spatial distribution of the acoustic properties of marine sediments, presented as a layered heterogeneous medium. Developed methods make it possible to create discrete, continuous or mixed structural-acoustic models of a heterogeneous seabed, taking into account stratification, fluid and gas-saturated bottom sediments, the presence of cavities and inclusions of various shapes and properties in them. Algorithms have been developed for obtaining a model acoustic response, which is a superposition of all acoustic signals reflected from geological boundaries, which have different reflection coefficients. Acoustic reflection is described by the so-called convolutional model. Mathematical modeling of the processes of determining the bottom topography by such means as an echo sounder, a multi-beam echo sounder and an interferometer has been carried out. With the help of the developed software package and using modern GIS-systems, digital elevation models and isobatic maps of individual surveyed water areas were created.

 

References

1. Aki K, Richards P. Kolichestvennaya sejsmologiya [Quantitative seismology]. M.: Mir; 1983. Vol. 1. 520 p. [in Russian].
2. Anderson RS. Akustika morskih osadkov [Acoustics of marine sediments]. M.: Mir; 1977. Statisticheskaya korrelyaciya mezhdu fizicheskimi svojstvami i skorost'yu zvuka v osadkah [Statistical correlation between physical properties and the speed of sound in precipitation]; pp.438–480 [in Russian].
3. Auzin AA, Glaznev VV. Komp'yuternoe geologo-matematicheskoe modelirovanie: problemy i vozmozhnosti [Computer geological and mathematical modeling: problems and opportunities]. Vest. Voronezh. universiteta. Geologiya. 2001;(11):199–204 [in Russian].
4. Bio MA. Obobshchennaya teoriya rasprostraneniya akusticheskih voln v dissipativnyh poristyh sredah [Generalized theory of acoustic wave propagation in dissipative porous media]. Mekhanika. 1963;(6):135–155 [in Russian].
5. Brekhovskih LM, Godin OA. Akustika sloistyh sred [Acoustics of layered media]. M.: Nauka; 1989. 416 p. [in Russian].
6. Gamil'ton EL. Akustika morskih osadkov [Acoustics of marine sediments]. M: Mir; 1977. Geoakusticheskie modeli morskogo dna [Geoacoustic models of the seabed]; pp.176–210) [in Russian].
7. Golod OS, Gonchar AI, Neverova SI, Shundel' AI. Obzor fiziko-geologicheskih modelej dna [Review of physical and geological bottom models]. Hydroacoustic journal (Problems, methods and means of researching the World Ocean). 2010;(7):73–81 [in Russian].
8. Holodov MF, Hordieiev AYu, Nesterenko LV, Tymchenko YuA, Fedoseienkov SH, Shundel' OI, Shchyptsov OA, Shchyptsov OO. Okeanohrafichni doslidzhennia morskoho ta richkovoho seredovyshcha [Oceanographic studies of the marine and river environment]. Geophysical journal. 2019;41(6):111–127 [in Ukrainian].
9. Gonchar AI. Matematicheskoe modelirovanie sloistyh neodnorodnyh sred s polostyami prostoj i slozhnoj formy [Mathematical modeling of layered inhomogeneous media with cavities of simple and complex shapes]. Zaporozh'e: NTC PAS NAN Ukrainy; 2004. 151 p. [in Russian].
10.Gonchar AI, Neverova SI, Shundel' AI, Shlychek LI. Sozdanie sistemy komp'yuternogo trekhmernogo modelirovaniya geofizicheskij polej geologicheskih struktur [Creation of a system of computer three-dimensional modeling of geophysical fields of geological structures]. Hydroacoustic journal (Problems,
methods and means of researching the World Ocean). 2010;(7):90–100 [in Russian].
11.Gonchar AI, Fedoseenkov SG, Shlychek LI, Shundel' AI. Prognozirovanie cifrovoj modeli rel'efa po model'nym dannym gidrogeoakusticheskih sredstv [Forecasting a digital elevation model based on model data from hydrogeoacoustic tools]. Hydroacoustic journal (Problems, methods and means of researching the World Ocean). 2014;(11):9–16 [in Russian].
12.Isakovich MA. Obshchaya akustika [General acoustics]. M.: Nauka; 1973. 496 p. [in Russian].
13.Kiri P, Bruks M. Vvedenie v geofizicheskuyu razvedku [Introduction to Geophysical Exploration]. M.: Mir; 1988. 382 p. [in Russian].
14.Kobrunov AI. Parametrizaciya v matematicheskih modelyah geologicheskih sred pri reshenii obratnyh zadach [Parametrization in mathematical models of geological media when solving inverse problems]. Geofizicheskiy Zhurnal. 2001;23(5):3–12 [in Russian].
15.Kuperman U, Ensena F. Akustika dna okeana [Ocean floor acoustics]. M.: Mir; 1984. 456 p. [in Russian].
16.Landau LD, Lifshic EM. Teoriya uprugosti. Teoreticheskaya fizika [The theory of elasticity. Theoretical physics]. M.: Nauka; 1965. Vol. VII. 204 p. [in Russian].
17.Lyapin AA, Seleznev MG, Sobisevich LE, Sobisevich AL. Mekhaniko-matematicheskie modeli v zadachah aktivnoj sejsmologii [Mechanical and mathematical models in the problems of active seismology]. M.: GNIC PGK (MF) pri Kub GU Minobrazovaniya Rossii; 1999. 294 p. [in Russian].
18.Nikolaevskij VN, Basniev KS, Gorbunov AT, Zotov GA. Mekhanika poristyh nasyshchennyh sred [Mechanics of porous saturated media]. M: Nedra; 1970. 339 p. [in Russian].
19.Pekeris K. Rasprostranenie zvuka v okeane [Sound propagation in the ocean]. M.: Izd-vo inostr. lit. Teoriya rasprostraneniya zvuka vzryva v melkoj vode [Theory of the sound propagation of an explosion in shallow water]. 1951;48–156 [in Russian].
20.Samchenko AN, SHvyrev AN, Pivovarov AA, Korotchenko RA. Rasprostranenie nizkochastotnogo akusticheskogo signala v melkom more s uchetom vliyaniya neodnorodnostej v donnyh osadkah [Propagation of a low-frequency acoustic signal in a shallow sea taking into account the influence of inhomogeneities in
bottom sediments]. Podvodnye issledovaniya i robototekhnika. 2011;2(12):52–56 [in Russian].
21.Sobisevich LE, Sobisevich AL. Volnovye processy i rezonansy v geofizike [Wave processes and resonances in geophysics]. M.: OIFZ RAN, GNIC PGK (MF) pri Kub GU Minobrazovaniya Rossii; 2001. 299 p. [in Russian].
22.Hempton L. Akustika morskih osadkov [Acoustics of marine sediments]. M.: Mir; 1977. 533 p. [in Russian].
23.Shchyptsov OA (Ed.). Chornoby`l`s`ka zona vidchuzhennya: kompleksna richkova naukovodoslidna ekspedy`ciya "Pry`p'yat` – 2019": [Chernobyl exclusion zone: integrated river research expedition "Pripyat – 2019"]. Kyjiv: DU "Derzhghidroghrafija". 2019 [In Ukrainian].
24.Shevchenko AA. Skvazhinnaya sejsmorazvedka [Borehole seismic survey]. M: RGU nefti i gaza; 2002. 129 p. [in Russian].
25.Shenderov EL. Volnovye zadachi gidroakustiki [Wave problems of hydroacoustics]. L.: Sudostroenie; 1972. 352 p. [in Russian].
26.Shenderov E.L. (1989). Izluchenie i rasseyanie zvuka [Sound emission and scattering]. L.: Sudostroenie [in Russian].
27.Shundel OI. Rozrobka matematychnoi modeli sharuvatoho neodnoridnoho seredovyshcha yak skladovoi chastyny banku okeanohrafichnykh danykh [Development of a mathematical model of a layered inhomogeneous medium as a component of the oceanographic data bank] [dissertation]. Kyiv. UA; Instytut
heofizyky im. S.I. Subbotina NAN Ukrainy; 2021. 221 p. [in Ukrainian].
28.Buckingham MJ. Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. J. Acoust. Soc. Am. 1997;102(5):2579–2596.
29.Buckingham MJ. Theory of compressional and shear waves in fluidlike marine sediments. J. Acoust. Soc. Am. 1998;103(1):288–299.
30.Hamilton EL. Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am. 1980;(68):1313–1340.
31.Ivakin AN. A unified approach to volume and roughness scattering. J. Acoust. Soc. Am. 1998;103(2):827–837.
32.Kargl SG, Williams KL. Double monopole resonance of a gas-filled, spherical cavity in a sediment. J. Acoust. Soc. Am. 1998;103(1):265–274.
33.Milholland P, Manghnani MH, Schlanger SO, Sutton GH. Geoacoustic modelling of deep-sea carbonate sediments. J.Acoust.Soc.Am. 1980;6(8(5)):1351–1360.
Published
2022-04-20
How to Cite
A.I. Shundel. (2022). Development of a mathematical model of a layered heterogeneous medium as an integral part of the oceanographic data bank of the National Academy of Sciences of Ukraine. Oceanographic Journal (Problems, Methods and Facilities for Researches of the World Ocean), (3 (14), 29-49. https://doi.org/10.37629/oj.vi3 (14).36