Model approaches for the classification of sediment

  • O.I. Shundel State Institution "Scientific Hydrophysical Centre of the National Academy of Sciences of Ukraine"
  • S.H. Fedoseienkov State Institution "Scientific Hydrophysical Centre of the National Academy of Sciences of Ukraine"
  • L.V. Nesterenko State Institution "Scientific Hydrophysical Centre of the National Academy of Sciences of Ukraine"
  • S.I. Nevierova State Institution "Scientific Hydrophysical Centre of the National Academy of Sciences of Ukraine"
Keywords: geological modelling, sediment classification, data analysis, acoustic signal, remote underwater sensing

Abstract

The paper explores two model approaches to the single-beam echosounder classification of sediments. Their applications for the analysis of oceanographic data are shown.

References

Gonchar AI, Fedoseenkov SG, Shundel OI, Nesterenko LV. Rozrakhunok formy obvidnoi vidbytoho syhnalu na osnovi skladnoi matematychnoi modeli vidbyttia i rozsiiuvannia syhnalu [Calculation of the form which is bending around the reflected signal on the basis of difficult mathematical model of reflection and dispersion of the signal]. Oceanographic Journal (Problems, methods and facilities for researches of the World Ocean). 2019; 1(12):49-62. [In Ukrainian].

Kutsenko AN. O vozmozhnosti distantsionnogo opredeleniia impedansa donnykh otlozheniy [On the possibility of remote determination of the impedance of bottom sediments.]. Izvestiya TRTU "Ekologiya 2004-more i chelovek". 2004, 5 (40):85-88 [In Russian].

Urick RJ. Principles of underwater sound. New York : McGraw-Hill; 1975.

Amiri-Simkooei AR, Snellen M, Simons DG. Riverbed sediment classification using MBES backscatter data J. Acoust. Soc. Am. 2009. 126(4):1724–1738. https://doi.org/10.1121/1.3205397

APL-UW High-frequency ocean environmental acoustic models handbook. Defense Technical Information Center; 1997. 210 p.

Bates CR, Whitehead EJ. ECHOplus measurements in Hopavagen bay, Norway. Sea Technol. 2001. 42(6):34-43.

Canepa G, Pouliquen E. Inversion of geo-acoustic properties from high frequency multibeam data. Boundary Influences in High Frequency Shallow Water Acoustics. 2005; р. 233–240.

Collins W, Gregory R, Anderson J. A digital approach to seabed classification. Sea Technol. 1996. 37(8):83–87.

Hamilton LJ, Mulhearn PJ, Poeckert R. Comparison of RoxAnn and QTC View acoustic bottom classification system performance for the Cairns area, Great Barrier Reef, Australia. Cont. Shelf Res. 1999. 19:1577-1597. https://doi.org/10.1016/S0278-4343(99)00020-5

Hellequin L. Boucher J., Lurton X. Processing of high-frequency multibeam echo sounder data for seafloor characterization. IEEE J. Ocean. Eng. 2003. 28(1):78–89. https://doi.org/10.1109/JOE.2002.808205

Hughes JE. Toward remote seafloor classification using the angular response of acoustic backscattering: A case study from multiple overlapping GLORIA data. IEEE J. Ocean. Eng. 1994. 19 (1): 112–126. https://doi.org/10.1109/48.289456

Lurton X, Pouliquen E. Automated sea-bed classification system for echo-sounders. Proceedings of the IEEE Oceans 1992 Conference; 1992 Oct. 26-29. Newport, RI, USA; 1992; p. 317–321. https://doi.org/10.1109/OCEANS.1992.612709

Price KV, Storn RM, Lampinen JA. Differential evolution. A practical approach to global optimization. Ch. 2. Berlin: Springer, 2005. 538 p. https://doi.org/10.1007/3-540-31306-0

Simons DG, Snellen MA Bayesian approach to seafloor classification using multi-beam backscatter data. Appl. Acoust. 2009; 70:1258–1268. https://doi.org/10.1016/j.apacoust.2008.07.013

Simons DG, Snellen MA. Сomparison between modeled and measured high frequency bottom backscattering. Proceedings of the European Conference on Underwater Acoustics. Paris: France. 2008. p. 639–644. https://doi.org/10.1121/1.2935856

Snellen M, Siemes K, Simons GG. Model-based sediment classification using single-beam echosounder signal. J. Acoust. Soc. Am. 2011;129(5): 2878-2888. https://doi.org/10.1121/1.3569718

Snellen M, Simons DG. An assessment of the performance of global optimisation methods for geoacoustic inversion. J. Comput. Acoust. 2008; 16(2):199–223. https://doi.org/10.1142/S0218396X08003579

Sternlicht DD, Moustier CP. Remote sensing of sediment characteristics by optimized echo-envelope matching. J. Acoust. Soc. Am. 2003;114(5): 2727–2743. https://doi.org/10.1121/1.1608019

Sternlicht DD, Moustier CP. Time-dependent seafloor acoustic backscatter (10–100 kHz). J. Acoust. Soc. Am. 2003; 114(5):2709–2725. https://doi.org/10.1121/1.1608018

Walree PA, Ainslie MA, Simons DG. Mean grain size mapping with single-beam echosounders. J. Acoust. Soc. Am. 2006;120(5):2555–2566. https://doi.org/10.1121/1.2345907

Walree PA, Tegowski J, Laban C, Simons DG. Acoustic seafloor discrimination with echo shape parameters: A comparison with the ground truth. Cont. Shelf Res. 2005; 25:2273–2293. https://doi.org/10.1016/j.csr.2005.09.002

Wienberg C, Bartholomӓ A. Acoustic seabed classification in a coastal environment (outer Weser Estuary, German Bight). A new approach to monitor dredging and dredge spoil disposal. Cont. Shelf Res. 2005; 25:1143–1156. https://doi.org/10.1016/j.csr.2004.12.015

Published
2021-04-22
How to Cite
Shundel, O., Fedoseienkov, S., Nesterenko, L., & Nevierova, S. (2021). Model approaches for the classification of sediment. Oceanographic Journal (Problems, Methods and Facilities for Researches of the World Ocean), (2 (13), 68-79. Retrieved from https://oceanographic-journal.org.ua/index.php/journal/article/view/25